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A model equation is derived for calculating transformation and propagation of Stokes 
waves. With the assumption that the water depth is slowly varying, the model 
equation, which is a nonlinear Schrodinger equation with variable coefficients, 
describes the forward-scattering wavefield. The model equation is used to investigate 
the wave convergence over a semicircular shoal. Numerical results are compared with 
experimental data (Whalin 197 1). Nonlinear effects, which generate higher-harmonic 
wave components, are definitely important in the focusing zone. Mean free-surface 
set-downs over the shoal are also computed. 

1. Introduction 
The parabolic approximation method has been developed extensively for studying 

forward-scattering problems in water waves in the last five years. Based on a linear 
water-wave theory, Radder (1979) and Lozano & Liu (1980) showed that the 
diffraction effects of a slowly varying refractive index can be described by a linear 
Schrodinger equation. Tsay & Liu (1982), Liu & Tsay (1983a) and Berkhoff, Booy 
& Rodder (1982) developed numerical algorithms to the Schrodinger equation for 
obliquely incident waves over varying topographies. Tsay & Liu (1982) also calculated 
the wavefield in the neighbourhood of a thin breakwater on a sloping bottom. These 
numerical results compared reasonably well with available experimental data. Based 
on the same linear formulation, Liu & Tsay (1983b) extended the theory to include 
backward scattering (reflection) via an iterative procedure. 

Whalin ( 1  97 l ) ,  in his wave-tank experiments concerning wave refraction over a 
semicircular sloping topography (which acts as a focusing lens), observed that in the 
region of wave convergence the nonli. t a r  effects became important. A significant 
amount of wave energy was transferred from the fundamental-frequency component 
to the higher-harmonic components owing to  nonlinearity. The linear theories 
mentioned above fail to give the appropriate description of this problem. In this paper 
we present a refraction-diffraction model based on the Stokes-wave theory. Assuming 
that the bottom slope is smaller than the wave slope ka and maintaining the accuracy 
up to O ( ~ U ) ~ ,  we derive an evolution equation for the wave envelope which is a 
nonlinear Schrodinger equation with variable coefficients. This evolution cquation is 
an extension to the (Ionstant-water-depth case (Yue & Mei 1980) and to the one- 
dimensional problem (Djordjevic & Redekopp 1978). The parabolic approximation 
is then applied to  expedite numerical computations. A portion of Whalin’s experi- 
mental data is used to verify the present model. Despite the existence of scatterings 
in experimental data, a reasonably good agreement between experimental results and 
the present theory is observed for the cases when the Ursell parameter is less than 
unity. The mean free-surface set-down due to wave shoaling is also calculated. For 
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the cases where the Ursell parameter is large, the present theory becomes inapplicable 
and the Boussinesq equationg should be used as the theoretical base. This part of the 
results will be presented in a separate paper. 

2. Model equations 
The description of the transformation of two-dimensional Stokes waves over a 

seabed of mild slope varying only in the direction of wave propagation is first given 
by Djordjevic & Redekopp (1978). Using the multiple-scale variable with an 
assumption that the percentage change of water depth within one wavelength, 
O(IVh(/kh) = O(S), is one order smaller than the slope of the free surface, i.e. 
O(S) = O(ku)2, and following a perturbation analysis similar to those developed by 
Chu & Mei (1970) and Davey & Stewartson (1974), Djordjevic & Redekopp showed 
that the evolution equation for the leading-order wave amplitude A(x, t )  is a nonlinear 
Schrodinger equation. The derivation of the evolution equation for three-dimensional 
cases where the bottom profile also varies slowly in the direction normal to that of 
wave propagation is straightforward but lengthy. The details of the derivation will 
not be presented here. For second-order Stokes waves propagating primarily in the 
x-direction, the evolution equation is 

where a = A/(CC,)i is the leading-order wave amplitude, and the free-surface profile 
can be expressed as 

expi (jZ&(x)dz-wot +c.c. +- - IA12 1 tCgi 2sinh2kh 

[A2 exp 2i ( JZ L(x) dz- oo t 
cosh kh (2 Gosh2 kh+ 1) 

8 sinh3 kh 
+ 

up to second order in ka, where C.C. represents the complex conjugate. It is understood 
that the coordinates used in (2.1) are slow coordinates. In  both (2.1) and (2.2), k 
denotes the wavenumber associated with the modified topography @x), where the 
real topography is given as 

z = - h(x, y )  = - [@x) + K(x, y)] ; (2.3) 

here h(x)  is also a slowly varying function of x. Thus & and k are the positive real 
roots of the transcendental equations 

(2.4) wt  = g.6 tanh EL, wt  = gk tanh kh 

respectively. Lozano & Liu (1980) showed that the choice of must satisfy the 
condition k2-@ = O ( 8 ) .  In (2.1) C and C, are the local phase and group velocities 
of waves with frequency wo, and the coefficient K for the nonlinear term can be given 
as 

(2 .5 )  
[cosh 4kh + 8 - 2 tanh2 kh] 

8 sinh4 kh 
K = k4C2 

In a slightly different form, the evolution equation (2.1) has also been derived 
independently by Kirby & Dalrymple (1983). 
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For a quasi-steady-state problem the timescale for the amplitude A is longer than 
O(S-l), and (2.1) can be reduced to 

In  the limiting case where the water depth is a constant, k = Land C,  C, and Eare 
constants. Equation (2.6) becomes 

-aA K(AI2A 
2ik -+V2A---- = 0: 

ax (Cc,)2 

which is the same equation as that, derived by Yue & Mei (1980). On the other hand, 
if the nonlinear effects are not important, the last term in (2.6) can be ignored. The 
linear version of (2.6) is the same as that found in Lozano & Liu (1980). 

Now we employ the usual parabolic approximation, which assumes that the 
amplitude envelope varies more slowly in the direction of wave propagation than in 
the lateral direction, i.e. 

Equation (2.6) can be simplified to be 

which is a nonlinear Schrodinger equation with x as a timelike variable. I n  essence, 
we have converted the elliptic equation (2.6) into a parabolic equation (2.9), which 
can be solved numerically with efficiency. We remark here that the term V2(CCg): 
is kept in (2.1) for completeness. Since this term is proportional to the curvature of 
the bottom topography, it does not have to be small even for mild-slope cases. 

3. Wave focusing due to bottom topography 
Whalin (1971) conducted a series of laboratory experiments concerning wave 

convergence over a bottom topography that acts as a focusing lens. The wave tank 
used in the experiments has the horizontal dimensions 25.603 m x 6.096 m. I n  the 
middle portion of the wave tank, 7.62 m < x < 15.24 m, eleven semicircular steps 
were evenly spaced and led to the shallower portion of the channel (figure 1). The 
equations approximating the topography are given as follows (Whalin 1971) : 

0.4572 (0 6 x < 10.67 - G(y)), 

h ( z , y )  = 0.4572+&(10.67-G-~) (10.67-G < x < 18.29-G), (3.1) 

0.1524 (18.29-G < x 6 21.34), 

G(y) = [y(6.096-~)]; (0 < y 6 6.096). (3.2) 

I 
where 

I n  both (3.1) and (3.2) the length variables are measured in metres. The bottom 
topography is symmetric with respect to the centreline of the wave tank, y = 3.048 m. 

A wavemaker was installed a t  the deeper portion of the channel where the water 
depth h,, is 0.4572 m. Three sets of experiments were conducted by generating waves 
with wave periods T = 1, 2 and 3 s respectively. Different wave amplitudes were 
generated for each wave period. I n  table 1 we summarize the experimental information, 
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FIGURE 1. Wave-tank configuration. 

Wave amplitude 
Wave period a0 (cm) 

T (5) ko hll 
(1 )  ( 2 )  

(3) (4) (5) 

(6) (7) (8) 

1 .0 1.922 0.97 1.95 - 

2.0 0.735 0.75 1.06 1.49 

3.0 0.468 0.68 0.98 1.46 

IJrsell parameter 
ko a0 u r  

( 1 )  ( 2 )  ( 1 )  ( 2 )  

(3) (4) (5) (3) (4) ( 5 )  

(6) (7) (8) (6) (7) (8) 

0.041 0.082 - 0.0057 0.0115 - 

0.012 0.017 0.024 0.0303 0.0429 0.0603 

0.007 0.010 0.015 0.0678 0.0977 0.1456 

TABLE 1. Experimental information a t  water depth ho = 0.4572 m 

including the measured wave amplitude a,, wave slope k,a,  and k,h,.  near the 
wavemaker. The Ursell parameter 

(3.3) 

is also calculated for each experiment. The values of wave slope and Ursell parameter 
are quite small near the wavemaker, indicating that the nonlinearity is not important 
a t  this stage. However, as is evident from Whalin's experiments, waves converged 
over the semicircular steps and a cusped caustic was formed in the shallower 
constant-water-depth (h, = 0.1524 m) region. Moreover, higher-harmonic com- 
ponents are measurable in this region, signalling the importance of nonlinearity. The 
experimental information near the cusped caustic is also summarized in table 2, in 
which a, is the measured first-harmonic wave amplitude and 2 a  represents the 
summation of first- and higher-harmonic amplitudes. Since the Stokes-wave theory 
becomes inadequate when the Crsell parameter is greater than unity, and the present 
theory also requires that the bottom slope (which is roughly 0.04 in Whalin's 
experiments) be smaller than the wave slope, we decided to  compare the experimental 
results from tests (1)-(4), as defined in tables 1 and 2,  with the present theory. 
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FIGURE 2 ( a ,  b ) .  For caption see facing page. 

To solve the problem by parabolic approximation, we chose the modified bottom 
topography h(x) as follows : 

0.4572 (0 < x < 7.62), 

L(z) = 0.4572-&(~-7.62) (7.62 6 z < 15.24), (3.4) i 0.1524 (15.24 < z < 21.34). 

Owing to  the symmetry of the problem, only one-half of the wave tank is involved 
in the numerical computations (0 < y < 3.048 m). The governing equation (2.6) is 
solved numerically by the Crank-Nicholson method (see e.g. Tsay & Liu 1982). The 
x-coordinate coinciding with the direction of wave propagation is treated as a timelike 
variable. Solutions are therefore obtained by marching in the x-direction. The 
nonlinear term in (2.6) is linearized by using Newton's iterative method (Smith 1978, 
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FIGURE 2. Theory us. experimental data (Whalin 1971): 0 ,  A, measured first- and second-harmonic 
amplitudes; -, linear theory for first-harmonic amplitudes; ---, T, ,  nonlinear theory for 
first-harmonic amplitude; - - - --, v2 ,  nonlinear theory for second-harmonic amplitude; - - - - - - - - - -, 
171, nonlinear theory for the mean free-surface set-down. (a)  T = 1 s ,  k, a, = 0.041 ; (b )  1 s, 0.082; 
(c) 2 s, 0.012; (d )  2 s, 0.017. 

p. 49). The iteration procedure is stopped and converged solutions are obtained when 
the relative error between two successive solutions is less than lop4; i.e. 
(A(”)  - A(”-1) 1 / 1  A(”)(  < for 0 < y < 3.048 along a given z-section. The following 
no-flux boundary conditions are used along the centreline and the sidewall of the tank : 

r= 0 (y = 0,3.048). (3 .5)  
i3A - 
ay 
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FIGURE 3. (a )  Contours of the first-harmonic wave amplitude for T = 1 s ,  k ,  a, = 0.082, 
( b )  Contours of the second-harmonic wave amplitude. 

For each experimental test, the wave amplitude a t  z = 0 is estimated from the 
experimental data directly and is used as the initial condition for numerical 
computations. Owing to  the data scattering, an average value is always used. 

To ensure that numerical solutions are not sensitive to the choice of grid sizes, 
different grid sizes are tested. We find that the largest grid size that should be used 
in the computations is dependent on the desirable resolution of the wavefield in the 
direction normal to the wave propagation. For the present problems, we use a t  least 
11 points along each x-section. I n  all the numerical solutions presented here, 
Ax = 0.3275 m and Ay = 0.3048 m are used. I n  all these computations, two or three 
iterations are necessary to satisfy the convergency condition. 

I n  figure 2 the numerical results of the wave amplitudes for the first two harmonics 
along the centreline of the wave tank are compared with experimental data. In  these 
figures the first-harmonic J?rave amplitude is denoted as the second-harmonic wave 
amplitude as v2 and the second-order mean free-surface set-down as q. Using ( 2 . 2 ) ,  
these quantities are defined as 

A 
r1 = IWI? 

k cosh kh (2 cosh2 kh + 1 )  
4 sinh3 kh v 2  = -MI2 cc, i 

klAI2 ' = -2CC, sinh 2kh' 

(3.6a) 

(3 .66)  

( 3 . 6 ~ )  

For convenience the absolute value of the set-down is plotted. I n  the case of T = 1 s 
the set-down is very small and can be ignored (figures 2a,  b) .  For the purpose of 
comparison, the results from a linear theory (Lozano & Liu 1980) are also presented 
in the same figures. In  spite of the data scattering, the agreement between the 
nonlinear theory and experimental results is reasonably good. Both the first- and 
second-harmonic wave amplitudes grow rather rapidly behind the sloping lens. The 
focusing distance is shorter for longer waves (T = 2 s). The linear theory tends to 
overpredict the first-harmonic wave amplitude, and is of course unable to calculate 
the second-harmonic component, which is significant in the present cases. The mean 
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FIGURE 4. ( a )  Contours of the first-harmonic wave amplitude for T = 2 s, k,a, = 0.017. 
( b )  Contours of the second-harmonic wave amplitude. 

free-surface set-downs over the shoaling zone are also evident in the figures. Whalin 
(1971) reported that there is a very small amount of wave damping (roughly 3 yo in 
the wave tank) caused by the viscous boundary layers along the sidewalls and the 
bottom of the wave tank. I n  the numerical results, viscous wave damping is ignored. 
It is also evident from figure 2 that there appears to be a weak reflection from the 
slope, which cannot be described properly by the present theory. 

In  figures 3 and 4 we present the contour lines of the first-harmonic wave amplitude 
ql and the second-harmonic wave amplitude q 2  for experimental tests 2 and 4 
respectively. I n  both cases, i t  is clear that waves first converge behind the semicircular 
shoal and bounce between two sidewalls while they propagate down the tank. For 
longer waves (T = 2 s ,  figure 3) the focus of the wave convergence is sharper and the 
standing wave pattern is clearly defined. Owing to the appearance of the sidewalls, 
the existence of wave jumps as discussed by Peregrine (1983) and Kirby & Dalrymple 
(1983) is not clear in the present examples. This phenomenon deserves further studies, 
however. 

4. Concluding remarks 
I n  this paper we have presented a model describing the propagation and trans- 

formation of Stokes waves over a mildly varying topography. The present model is 
verified by comparing the numerical results with laboratory experimental data. The 
model can, however, be improved and extended in two directions : (1)  the relaxation 
of the requirement on the smallness of bottom slope as compared with the wave slope 
is desirable for some practical engineering problems; (2) the extension of the prcsent 
theory into the shallow-water regime where the Ursell parameter is greater than unity 
is possible by using the Boussinesq equations as governing equations. Research on 
the latter aspect is underway; some of the results will be presented in the near future. 
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a grant to Cornell University. The authors would like to express their appreciation 
to Dr Robert A. Dalrymple, Dr James T. Kirby and Dr Robert Whalin for their 
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